

 Table of Contents
 Key Takeaways 2

 Overview 3

 Introduction 3

 Why parallel? 4

 Which operations can we parallelize? 4

 Under the hood 6

 Different ways to parallelize execution 6

 Task parallelism 7

 How parallelizable is a program? 7

 Issues with task parallelism and methods to deal with them 10

 Actor model (e.g. Vara) 11

 Memory locks (e.g. Solana, Sui and Sei) 14

 Software transactional memory (e.g. Aptos and Monad) 21

 Data parallelism (SIMD) 23

 Wrapping up 24

 References 26

 New Binance Research Reports 27

 About Binance Research 28

 Resources 29

 Technical Deep Dive: Parallel Execution 1

 Key Takeaways
 Parallel computing can increase throughput of blockchains by utilizing

 computing resources more efficiently.

 Traditional blockchains operate in series, but a number of newer projects
 support parallel computing. While there are several ways to do this, this report
 focuses on techniques to parallelize the execution step.

 Software design for parallel computing has many pitfalls that can lead to critical
 bugs. Several mechanisms exist to address these challenges, with pros and
 cons. We discuss three mechanisms and example projects 1 that use them:

 ○ Actor model (e.g. Vara): solves critical issues, but has computation
 overhead, may miss opportunities to parallelize, and can be difficult for
 developers to reason about or debug if the program is complex.

 ○ Memory locks (e.g. Solana, Sui and Sei): gives developers finer-grained
 control of the program, potentially increasing throughput. However, it is
 vulnerable to critical bugs that can be hard to identify, such as deadlocks.

 ○ Software transactional memory (“STM”) (e.g. Aptos and Monad): often
 achieves high parallelism without risk of the critical bugs seen in the
 memory lock model. Simpler for decentralized application (“dApp”)
 developers, as added complexity is dealt with by the base layer. This makes
 implementation potentially complex for base layer devs. Also, throughput
 can be worse than serial computation in some cases.

 Projects can also use single instruction multiple data (“SIMD”) processing,
 which improves speed of certain calculations, e.g. cryptographic verifications.

 1 Understanding these different technologies gives us insight into different projects, but we need to
 consider them with other factors to form conclusions about the projects. These example projects
 were chosen simply as examples to illustrate the points made in this report.

 Technical Deep Dive: Parallel Execution 2

 Overview

 Introduction
 The recent surge in Solana's price has piqued interest in its distinctive design choices and
 technologies, especially in comparison to the frequently discussed Ethereum. There are
 certain areas where Ethereum has historically stumbled, but Solana has excelled. An
 example is Sealevel, a feature that allows the Solana Virtual Machine ("SVM") to compute
 programs (normally referred to as "smart contract"s on other blockchains) in parallel. This
 enables Solana to achieve significantly higher throughput than a conventional Ethereum
 Virtual Machine (“EVM”).

 Another noteworthy aspect is Solana's extensive use of the Rust language, not only at its
 core layer but also for program development. This approach assists in mitigating specific
 vulnerabilities and enhancing system performance.

 In this report, we'll concentrate on parallel execution. We will delve into its technical
 aspects and obstacles that software developers must overcome. We will explore various
 strategies for dealing with these challenges, their advantages and disadvantages, and
 examples of different blockchains that utilize them for parallel processing.

 This report marks the inaugural issue of our Technical Series — a deeper dive into the nuts
 and bolts of various blockchain technologies than our usual coverage. Our goal is to help
 you unravel the intricacies of certain technologies and techniques used in the crypto space.

 You may run across an equation or two, along with snippets of code. For those with a
 tech-savvy streak, this deeper dive may prove particularly engaging. However, we made it a
 point to write this report in an accessible way to anyone in the crypto space, regardless of
 their background. We hope you find this report useful and insightful.

 Technical Deep Dive: Parallel Execution 3

 Why parallel?
 Executing in parallel can improve throughput by utilizing hardware more efficiently.

 Parallel execution employs simultaneous computation of multiple tasks on two or more
 processing units. The common perception is that parallel execution enhances throughput.
 But, why should that be the case?

 First of all, parallel computation isn’t always faster — it can sometimes be slower. It is
 normally faster than serial computation because:

 1. Hardware with multiple slower cores is easier to build and require less energy to
 operate than a single fast core

 2. Processes in a program can often run in parallel

 Firstly, creating and operating a fast single core processor is much more difficult and
 expensive compared to multiple slower cores. This is why processor clock speeds have
 remained mostly stagnant for 2 decades, while we see a proliferation in the quantity of
 cores. A fast single core will consume more energy because it requires higher voltage, and
 face other issues such as limitations with cache and memory.

 Secondly, programs don't automatically benefit from multiple cores, leading to our next
 point. Most programs can be parallelized to a certain degree. The greater the degree of
 parallelization (as opposed to being serial), the more a program can theoretically
 leverage multi-core hardware . However, writing parallel software can be challenging
 and carries an increased risk of bugs . Therefore, the advantage of higher throughput by
 switching to multi-core systems should be analyzed in light of these aspects.

 Which operations can we
 parallelize?

 There are many opportunities to parallelize, including overlapping the consensus and
 execution stages. In this report, we focus on methods to parallelize the execution
 stage

 One way to parallelize is to overlap (“pipeline”) different validator operation stages. For
 example, proof-of-stake (“POS”) validators need to share (“gossip”) transaction
 information, elect a block producer, execute the proposed block, vote on the block, and
 carry out several other operations. Conventionally, POS chains perform these tasks in

 Technical Deep Dive: Parallel Execution 4

 series. Newer blockchains are exploring methods to process some of these steps in
 parallel.

 Protocols can also use methods such as directed acyclic graphs (“DAG”s) for its consensus,
 which can be applied to proof of work or proof of stake systems. Sui, for example, utilizes
 DAG for its consensus.

 Parallelization can also be applied to the execution of transactions themselves. Nodes need
 to carry out a sequence of transactions to ascertain state transitions. Parallelizing this
 process could boost efficiency and execution speed. Our discussion here mainly focuses on
 this aspect—parallelizing transaction execution.

 Figure 1: Parallel computing comes in many forms. This report focuses on parallel
 computing during the execution stage

 Source: Binance Research

 Technical Deep Dive: Parallel Execution 5

 Under the hood

 Different ways to parallelize
 execution

 Sharding reduces workload on a given client, task parallelism utilizes multiple cores
 for different tasks, and data parallelism improves performance of certain types of
 operations, such as cryptographic validation.

 Let’s look at a non-exhaustive list of approaches different blockchains have used for
 parallel execution.

 ● Sharding: split execution work between validators
 ● Task parallelism: process non-dependent transactions in parallel using multiple

 cores
 ● Data parallelism: process similar instructions on different data simultaneously

 (SIMD)

 (Execution) Sharding

 The blockchain is split (“sharded”) into multiple parts, and transactions related to each
 shard is processed by the assigned nodes separately. Sharding may be considered a
 parallel processing technique from a network perspective. From an individual node’s
 perspective, they may still be processing transactions in series. However, a given node
 processes a fraction of all transactions submitted to the network, resulting in lower
 workload and increased throughput.

 TON is an example of a chain that implements this. Ethereum planned to do this at one
 point, before opting for the roll-up centric design. Note that Ethereum’s current plan,
 Danksharding, is a slightly different concept, as it shards transaction data , without splitting
 execution workload.

 We won’t deep dive into this here.

 Task parallelism

 An execution client executes multiple transactions simultaneously, using multiple
 processing units. For example, if a node’s hardware has 16 cores, it may be able to
 compute 16 transactions simultaneously, in batches.

 Technical Deep Dive: Parallel Execution 6

 Solana falls under this category. Solana has no shards, so an execution client needs to
 execute all transactions in a block . Execution is quicker because nodes can utilize its
 hardware more efficiently by taking advantage of multiple cores.

 Data parallelism (Single instruction multiple data, or SIMD)

 Task parallelism computes multiple instructions on multiple data (“MIMD”). On the other
 hand, data parallelism (the way we define it in this report) performs a single instruction on
 multiple data (“SIMD”) 2 . SIMD operates at a low level, mostly for manipulating vectors and
 matrices, which are arrays of numbers. This is useful for many types of operations, notably
 cryptographic hashing and verification.

 Figure 2: We deep dive into parallel computing a full block (task and data parallelism),
 rather than sharding

 Source: Binance Research

 Task parallelism
 How parallelizable is a program?

 Tasks which are independent can be computed in parallel, and result in the same
 outcome had they been computed in series. The program execution speed is limited
 by the longest chain of dependent tasks.

 Parallelism can increase throughput, but it comes with challenges. One of the first
 challenges is to determine if two tasks can be computed in parallel. Let’s introduce a
 concept called independence : Task A and Task B can be executed in parallel if they are
 independent.

 2 Not to be confused with Solana IMprovement Docs (also called SIMD)

 Technical Deep Dive: Parallel Execution 7

 Cases when tasks are dependent

 Case 1:

 Case 2:

 Most people would (correctly) guess that transactions (“txs”) in Case 1 are independent,
 but not in Case 2. Imagine if there are two CPU cores, each core handling one transaction.
 In Case 1, the second transaction can happen regardless of the outcome of the first, and
 vice versa. One transaction can fail or we can change the sequence of transactions, and the
 final outcome will still be the same.

 This is not true in Case 2. If Bob has no BTC initially, the outcome of tx1 depends on what
 happens in tx0.

 It may be tempting to conclude that two transactions are parallelizable if the sequence
 does not matter. In other words, if we can flip tx0 and tx1 and get the same outcome, are
 the transactions independent? The answer is no. Even when their order doesn't matter,
 two transactions can still be dependent . Consider this case:

 Case 3:

 In Case 3, the sequence of transactions doesn’t affect the outcome. tx1 can happen before
 tx0. However, these two transactions are still dependent. Imagine these two processes
 (“threads”) running concurrently:

 Technical Deep Dive: Parallel Execution 8

 Figure 2: An example of a race condition , a type of software bug

 BTC balance
 Thread 0 Thread 1 Alice Carol Bob

 Initial state 2 2 0
 Read Alice’s balance (2BTC)

 Read Carol’s balance (2BTC)
 Read Bob’s balance (0BTC)

 Read Bob’s balance (0BTC)
 Update balances (Alice:
 1BTC, Bob: 1BTC)

 Update balances (Carol:
 1.5BTC, Bob: 0.5BTC)

 Write new balance to
 memory

 1 2 1

 Write new balance to
 memory

 1 1.5 0.5

 Source: Binance Research

 Bob was supposed to have 1.5 BTC, but instead, he has only 0.5 BTC. If Thread 0 had
 completed later, Bob would have had 1 BTC, which is still not right. As we can see, the
 result is unpredictable because different components can interact in various ways,
 depending on when they happen. This turns out to be a significant issue.

 Conditions for (in-)dependence

 Two tasks are dependent if they fulfill one of these conditions:

 ● The output of one task writes to the input of the other — e.g. Alice transfers ETH
 to Bob (output), and Bob (input) transfers ETH to Carol.

 ● The output of multiple tasks write to the same memory location - e.g. both Alice
 and Carol transfer ETH to Bob (output).

 For the math-inclined, a more formal statement is Bernstein’s conditions. For two tasks i
 and j, where M(i) are memory locations i modifies, and R(i) are memory locations that i
 reads, i and j are independent if:

 𝑀 (𝑖) ⋂ 𝑀 (𝑗) = 𝑀 (𝑖) ⋂ 𝑅 (𝑗) = 𝑅 (𝑖) ⋂ 𝑀 (𝑗) = ∅

 These math symbols effectively say the same thing as our two bullet points above.

 Back to our question: how parallelizable is a program? It is determined by how dependent
 our tasks are. The program is held back by the longest chain of dependent tasks , which
 needs to be executed in series.

 Technical Deep Dive: Parallel Execution 9

 Blockchain transactions often don't depend heavily on each other, so they can run in
 parallel to a large extent. This provides a lot of opportunities to speed up the execution by
 working on multiple transactions simultaneously.

 Notably, many cryptographic schemes require fully sequential computation. It’s what
 makes them secure. For example, the computation below hashes a value 1000 times, and
 has to be run sequentially.

 𝑐
 𝑖
 = 𝑆𝐻𝐴 256 (𝑐

 𝑖 − 1
), 𝑓𝑜𝑟 𝑖 = 0 , 1 , ... , 1000

 These types of computations are common in blockchain. For example, the Fiat-Shamir ,
 which we might use as part of zero-knowledge (“zk”) proof generation, requires iterative
 hashing. Although such cryptographic computations need to be performed sequentially, if
 several of such computations happen in separate independent transactions, we can still
 parallelize them

 Additionally, on-chain cryptographic verifications (e.g. signature verification) are very
 common, and these often benefit from parallel computing.

 Issues with task parallelism and methods to deal with them

 Recall that task parallelism refers to multiple instructions on multiple data (MIMD)
 processes, the ability to execute multiple different tasks simultaneously. While this can
 increase throughput, it also opens a can of worms due to concurrency issues.

 Loosely speaking, parallel computing refers to having more than one
 processor core running at the same time. Concurrent computing, a closely
 related term, refers to a system where multiple parts can run in an
 out-of-order fashion, without affecting the outcome. In our case,
 concurrency enables parallel computing. If it doesn’t immediately make
 sense, don’t worry. Many use the two terms interchangeably, and it will
 work for our purposes too.

 Concurrent programs are prone to software bugs . A non-exhaustive list includes:

 × race conditions, as we saw earlier
 × reentrancy issues
 × deadlocks, where two or more tasks wait for one another indefinitely, and a related

 condition called livelocks
 × non-composability, where a software component may be correct on its own, but

 have critical bugs if used in a larger program

 Technical Deep Dive: Parallel Execution 10

 × priority inversion, a condition where low priority task may indirectly block a higher
 priority task due to intricacies on how a scheduler works

 × resource starvation, where some tasks consume more than its fair share of
 resources, starving other tasks of the resources they need

 The first four are critical bugs . Priority inversion and resource starvation may be critical
 depending on the situation.

 Additionally, concurrent programs are harder for developers to manage . This is because
 their design is more complex, and it's more difficult to figure out and fix issues.

 However, if we can address these challenges, the advantages of parallel computing can
 exceed the difficulties. Let's explore some methods to manage this (known as "concurrency
 control") and take a look at some example projects that use them:

 ● Message passing model :
 ○ Actor model (used by Vara)

 ● Shared memory model , which can be further categorized into:
 ○ Memory locks such as mutual exclusion (mutex) (used by Solana, Sui and

 Sei)
 ○ Optimistic concurrency control or software transactional memory

 (OCC/STM) (used by Aptos and Monad)

 Actor model (e.g. Vara)

 Solves many critical problems with concurrency. However, the global state cannot be
 directly observed, which makes it harder for the dApp developer to reason about and
 debug. There may also be missed opportunities to parallelize

 The actor model assigns different actors their private state . An actor can directly modify its
 private state, but only indirectly modify another actor’s state by passing a message . When
 an actor receives a message, it decides how to handle it, potentially modifying its own state
 in response to the message.

 Technical Deep Dive: Parallel Execution 11

 Figure 3: Actors have private states that they have exclusive access to. Actors can also
 send or receive messages from other actors.

 Source: Binance Research

 How does this enable parallelism? Each actor can process their own operations
 sequentially, while the program (with many actors) assigns a processing thread to each
 actor. Since actors can only access their own data, which is unique, there cannot be
 situations where multiple actors are reading or writing to the same memory location.
 Therefore, assigning a thread to each actor enables parallel computing, without risk of data
 dependency issues.

 CosmWasm (which is a smart contract framework, not a blockchain) also uses the actor
 model. It uses it to avoid reentrancy vulnerabilities on smart contracts, one of the biggest
 smart contract vulnerabilities on Ethereum Virtual Machines (EVMs). It can potentially be
 used to enable parallel computing as well, but CosmWasm does not support this yet, as of
 writing.

 While the actor model solves many issues with concurrency, it is not perfect. A single actor
 processes its tasks sequentially, which can miss opportunities to parallelize. Let’s see an
 example, using a hypothetical decentralized vegetable store serving several customers:

 Technical Deep Dive: Parallel Execution 12

 Figure 4: Three actors (the buyers) querying an actor’s (vege store’s) private state by
 exchanging messages. In a basic actor model, the vege store above needs to process
 each message one by one, although each operation is independent

 Source: Binance Research

 Despite the vegetable store actor processing messages sequentially, our independence
 conditions suggest they could be handled concurrently. Multiple processes can read the
 same datapoint in parallel. Is there a more effective model that allows the store to disclose
 its private state like a public price list? 3

 Also, there's no single location to observe the system's global state. A programmer might
 examine each private state to understand the bigger picture, but it can sometimes be
 complex. Interwoven private states can generate a global state that's not instantly
 visible , making system behavior prediction challenging.

 3 This can actually be done with some tweaks. For example, we can improve our basic actor model
 by defining some values as immutable (such as the price) and some as mutable (such as the number
 of items and balances). Immutable values can be safely read directly by any actor because there is
 no possibility of a process modifying it. However, implementing this increases complexity.

 Technical Deep Dive: Parallel Execution 13

 Figure 5: It’s a bad idea to have duplicate states if they are meant to be global, but this
 can happen in a poorly implemented program using the actor model. Alice thinks Bob is
 happy, but Bob is actually unhappy. The outcome of an interaction is unpredictable. If
 we try to piece together the global state, we’ll realize it is either inconsistent or more
 complicated than we initially thought.

 Source: Binance Research

 Memory locks (e.g. Solana, Sui and Sei)

 Achieves high concurrency if implemented correctly. May be easier for dApp
 developers to reason about. Has many pitfalls that lead to critical software bugs, but
 many (not all) are mitigated by using a language with strong thread-safety (eg: Rust).

 In the memory lock model, processes have access to all memory locations (i.e. data) by
 default. If a process wishes to access some data, it ‘locks’ that memory location before
 starting its process. Once the process is complete, it unlocks that memory location to
 release it, so other processes can use it again.

 Technical Deep Dive: Parallel Execution 14

 Figure 6: In a mutex lock, every process wishing to access memory will first lock it.
 Another process wishing to access the data will wait until it is unlocked, before locking
 it again and using the data.

 Source: Binance Research

 But we can do better. Recall the conditions for independence. Another way of stating it is:

 Multiple tasks can access the same memory location only if none of them modifies its
 contents

 We can have a mechanism that checks every process wishing to access memory for
 whether it intends to read or modify the data. The mechanism disallows a process from
 accessing the data if the rules of independence are violated. It effectively has two types of
 keys, read-only keys and a write (modify) key.

 Technical Deep Dive: Parallel Execution 15

 Figure 7: We can have a locking mechanism which allows either a) multiple read
 processes or b) one write process to access the data

 Source: Binance Research

 Let’s have a look at Solana’s code. In Solana, memory locations are called accounts . An
 account can contain data, and transactions may need to lock one or more accounts in order
 to access the data inside. Below is one part of the code that keeps track of the accounts
 that have been locked.

 Figure 8: Solana data structure that contains information on account locks. This data
 structure itself uses Mutex (line 105) which ensures that only 1 thread at a time can
 access the list of account locks.

 Source: Solana repository commit c3323c0 . Solana > accounts-db > src > accounts.rs

 Technical Deep Dive: Parallel Execution 16

https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

 Figure 9: Usage of RwLock<> in Solana’s code, which is similar to Mutex but allows
 multiple read operations to happen concurrently

 Source: Solana repository commit c3323c0 . Solana > client > src > transaction_executor.rs

 Back to our vege store illustration. With memory locks, the three buyer’s queries can be
 performed in parallel, because they do not modify the data.

 Figure 10: Multiple read operations are allowed, so these three buyers can read the
 database concurrently. It is as if the store owner has a board displaying prices and
 current inventory levels. Multiple people can read the board at the same time.

 Source: Binance Research

 While it sounds conceptually simple, memory locks are complicated to work with and
 error-prone. In fact, some strongly discourage using this model. One of Go’s (or Golang, the
 programming language) slogan is “ Don't communicate by sharing memory; share memory
 by communicating.”

 Using memory locks is doing precisely what Go says you shouldn’t do (note that memory
 locks are available in Go despite this slogan). The reason is there are many pitfalls when
 writing code with memory locks . It’s easy to mis-coordinate the locking process. A

 Technical Deep Dive: Parallel Execution 17

https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

 process could lock a data point, complete its process, and forget to unlock it. Or the
 process is terminated before it can unlock a data point. Tasks that need to access that
 memory location are now locked out indefinitely.

 Deadlocks are another pitfall, and can be difficult to identify . A deadlock happens when
 two processes need at least two locks, but have each acquired one. They will wait on each
 other indefinitely, because neither can acquire the other lock it needs.

 Figure 11: A deadlock. Process A and B wait for each other forever .

 Source: Binance Research

 Data can also be corrupted, called mutex poisoning in the Rust community, when a thread
 holding a lock aborts (‘panics’) due to an error. Unlike our example earlier of a lock never
 being returned, Rust has safety mechanisms to ensure a lock is returned even if a process
 terminates. However, the contents of the data may be corrupted, as the thread may have
 partially modified the data before crashing.

 Programs designed with memory locks are also normally not composable —a software
 module could work properly on its own, but fail when used as part of a larger program. A
 programmer may have written code in a way that ensures no deadlocks happen within the
 module, but when interacting with other modules that access the same data, a deadlock
 may be created. Also, different modules may use different mutex logic—one using a guard
 and one using a more manual approach—which can lead to mis-coordination in handling
 the memory locks. These situations are likely to result in critical bugs.

 With all these issues, why is anyone using memory locks at all? One important factor could
 be because of Rust (the programming language), which allows programmers to write
 code with memory locks in a safer way than was possible with previous languages such
 as Java and C#. Incidentally, both Solana and Sui are written in Rust 4 . Sei is a Cosmos

 4 Deadlocks are still a potential issue when programming with Rust.

 Technical Deep Dive: Parallel Execution 18

 chain, written in Go, but its parallelization module is written in Rust. With the safety
 afforded by Rust, these projects can benefit from the advantages of using memory locks.

 Figure 12: Rust’s mascot (left) and Go’s mascot (right) arguing. If you don’t get the
 joke: Rust says Go is only good at the actor model. Go responds by poking fun at
 Rust’s notoriously strict compiler. Rust’s compiler enables memory locks to be used
 relatively safely, but it also causes many new Rust programmers to spend more time
 “fighting” with compiler errors than actually writing code. Rust hits back by saying
 that because of the compiler, Rust doesn’t have data races (a type of race condition, a
 critical bug we demonstrated earlier), unlike Go.

 Source: Binance Research

 Memory locks normally offer finer-grained control than the actor model, making it easier
 for developers to optimize an application. A program using the memory lock model may
 also be easier to reason about than one using the actor model, especially in simple cases.
 In complex programs, this point is debatable.

 When designing a program with memory locks, there is a tradeoff in the level of
 granularity . Highly granular locks enable greater parallelism, because it avoids locking
 parts of data that don’t need to be locked. But high granularity also results in more
 overhead due to the greater complexity of managing locks, and a higher risk of creating
 deadlocks, as it is more complex for programmers to reason about.

 Solana programs (aka smart contracts) are encouraged to split their state across several
 accounts, which increases granularity. For example, a decentralized exchange (“DEX”) can
 store information on all its liquidity pools (“LPs”) in a single account. However, this may be
 non-optimal, as transactions wishing to access this information will lock the entire blob of
 data, preventing others from accessing it. On the other end of the spectrum, the program
 could have a separate account for each LP pool, which increases parallelism but at the cost
 of greater overhead and risks.

 Technical Deep Dive: Parallel Execution 19

 Figure 13: Higher granularity improves parallelism because of lower contention
 (conflicts)…but increases computation overhead and risk of creating deadlocks

 Source: Binance Research

 Similar to the actor model, handling memory locks requires extra work from the software
 programmer. For example on Solana, transactions need to explicitly declare the accounts
 (i.e. memory locations) they will access . The Solana VM then uses this information to lock
 data associated with those accounts.

 Figure 14: Transactions on Solana need to declare the memory locations (“accounts”)
 that it will read or modify. This code defines the format of this information. The runtime
 uses this information to decide which transactions to run in parallel.

 Source: Solana repository commit c3323c0 . Solana > sdk > program > source > account_info.rs

 Technical Deep Dive: Parallel Execution 20

https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

 Software transactional memory (e.g. Aptos and Monad)

 STM normally achieves high parallelism without the risks of deadlocks. dApp
 developers do not need to deal with increased complexity, but base layer
 implementation can be difficult. Throughput can be low if there are many
 dependencies, as transactions may retry many times before succeeding.

 Software transactional memory (“STM”) takes an optimistic approach to shared memory.
 It runs many threads in parallel, disregarding whether they are independent or not. Once
 done, it checks for potential conflicts. The highest priority task in any conflict is committed,
 while the others are aborted and rerun (“retry”) in the next cycle. This happens until all
 processes are executed.

 Figure 15: Simplified illustration of Aptos’ STM design: Tx0, Tx1 and Tx2 are taken from
 the queue and run optimistically in parallel. In Cycle 0, Tx0 modifies Data 0, Tx1
 modifies Data 2 and 3, and Tx2 modifies Data 2. After the cycle, Tx1 and Tx2 notice that
 they had both modified Data 2 (a conflict). Because Tx1 is earlier in the sequence of
 transactions, Tx1 commits and Tx2 aborts. Tx2 retries in the next cycle.

 Source: Binance Research

 There are many different designs of STM. Aptos’ STM design uses a multi-versioned data
 structure to detect and handle conflicts. When transactions modify any value, the system
 logs the change and attaches a new version number, while keeping track of the historical
 values. All STM implementations require some form of log like this. The log takes place in
 memory before being committed, which can lead to high memory requirements .

 Let’s return to our vege store illustration. If we were to use STM, it would look something
 like this:

 Figure 16: using STM on the vege store. After Cycle 0, all three threads note that there
 had been no conflict, so all three transactions are committed. In Cycle 1, Tx4 and Tx5

 Technical Deep Dive: Parallel Execution 21

 see that the information they read or modified (number of carrots) had been changed
 by Tx3 in the same cycle. Since Tx3 is ordered before Tx4 and Tx5 in the sequence of
 transactions, Tx3 is committed, and Tx4 and Tx5 abort. Tx4 and Tx5 retry in Cycle 2.

 Source: Binance Research

 At first glance, STM’s concept of aborting and retrying many times may seem wasteful.
 Also, the chance of conflict increases with the number of threads . If we run 100 threads,
 we are more likely to have conflicts than if we run 5 threads. In a program with many
 dependencies, a task can abort many times before finally committing. It also has
 computation overhead of managing the process. This can ultimately result in lower
 performance than simple serial execution.

 Nevertheless, STM results in higher throughput in many cases . It generally achieves
 comparable parallelism to a memory lock model with high granularity, but without the risk
 of deadlocks. Also, there are clever ways to design the system so that an aborted task does
 not need to be recomputed from scratch, or to detect potential conflicts earlier in a cycle
 for tasks that are being retried.

 It is also easier on the dApp developer. The dApp developer can write a smart contract as
 if it is a serial program , yet benefit from parallel computation. However, the base layer
 (e.g. Aptos’ VM) needs to handle the complexity of concurrency and parallelizing the
 execution, making STM complex for the base layer developers (e.g. the Aptos core team
 writing the code for the blockchain). STM is also an area of active research, so some
 aspects of the model may not be fully understood yet.

 Technical Deep Dive: Parallel Execution 22

 Data parallelism (SIMD)
 SIMD improves computation speed for certain types of operations, such as
 cryptographic verifications.

 Data parallelism, in this report, refers to operations with a single instruction on multiple
 data (SIMD). Instructions are quite basic computing units, such as addition and
 multiplication. It turns out that this is useful when dealing with vectors or matrices. SIMD
 allows us to perform vector or matrix operations very quickly.

 Figure 17: In this example, we encrypt our secret data {1.5, 3.2} by multiplying it with
 the encryption key matrix. To decrypt, we multiply the inverse of this matrix with the
 encrypted data. If you remember matrix multiplications, you will see that we retrieve
 the original secret data. Real-world ciphers such as Advanced Encryption Standard
 (AES) perform similar matrix multiplications as part of a larger, much more
 sophisticated algorithm.

 Source: Binance Research

 This is not a math lesson, so we won’t dive into this. The thing to note is that vectors and
 matrices are very useful in many areas of computer science, such as processing large
 amounts of data and performing cryptographic operations . The basic example above
 shows how matrices can be used for encryption and decryption using an encryption key.

 SIMD can be done using CPUs or GPUs. Many CPUs today have 64-bit processors. This
 means that in each clock cycle, a processor can operate on 64-bit data. Some processors,
 such as AVX-2 and AVX-512, expand this register to 256 or 512 bits. With a 256 bit register,
 the processor can simultaneously operate on four 64-bit numbers, for example.

 Technical Deep Dive: Parallel Execution 23

 GPUs can also perform SIMD operations, where a single task scheduler can assign similar
 instructions to many processing units. With several thousand cores, GPUs are performant in
 cases where a single instruction is used across a very large dataset.

 Vector and matrix operations involve a lot of repeated additions and multiplications on
 arrays of numbers. SIMD can speed up these operations significantly.

 Let’s look at Solana’s code, showing the use of the AVX processor.

 Figure 18: Code snippet performing cryptographic verification during Solana’s Proof of
 History (PoH). Depending on the hardware being used, Solana will use different
 algorithms for verification. For example, if it detects an AVX-512 processor, it will
 verify using SIMD with 16 data points per cycle (lines 766 and 767).

 Source: Solana repository commit c3323c0 . Solana > entry > src > entry.rs

 Wrapping up
 Let’s recap what we have covered. Parallel processing can increase throughput (or reduce
 cost) by utilizing resources more efficiently. The execution stage is one of several areas we
 can parallelize, but it presents issues that software developers must overcome. Incorrectly
 handling these issues results in critical software bugs. We discussed a few solutions, which
 is summarized below, including their pros and cons:

 Technical Deep Dive: Parallel Execution 24

https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

 Figure 19: Pros and cons of approaches discussed in this report

 Pros Cons Example projects
 discussed in this
 report

 Sharding Node operators do not
 need to have hardware
 that support parallel
 processing

 Often trades off
 security or latency for
 throughput, rather
 than using hardware
 more efficiently

 Used by TON, and was
 the original Ethereum
 2.0 vision

 Message-
 passing
 model

 Actor model Solves most
 concurrency issues

 Harder to reason
 about, and may miss
 parallelism
 opportunities

 Vara

 Shared
 memory
 model

 Memory locks /
 Mutex

 Finer-grained control,
 allowing for more
 optimization.
 Potentially lower
 complexity burden on
 dApp developers

 Vulnerable to some
 critical issues, notably
 deadlocks and
 non-composability,
 even when using a
 thread-safe program
 like Rust

 Solana, Sui, Sei

 Software
 Transactional
 Memory (STM)

 Solves critical
 concurrency issues.
 Often achieves high
 parallelism. No
 additional complexity
 for dApp developers.

 Complexity burden on
 base layer developers.
 Active area of
 research, so
 potentially less well-
 understood.

 Aptos, Monad

 Data
 parallelism

 SIMD Significant speed-up
 on certain operations,
 mostly those that use
 matrices, which
 includes many
 cryptographic
 functions

 Only works for certain
 operations, i.e. those
 that have the same
 instructions on many
 data points

 Solana

 Source: Binance Research

 Will Ethereum incorporate parallel processing ? It is unlikely in the near future,
 considering it is pursuing a rollup-centric model. Nevertheless, there is promising potential
 for EVMs equipped with parallel processing capabilities (e.g. Monad) and rollups that use
 parallel processing at the sequencer level and settle on Ethereum (e.g. Eclipse). There is
 also an emerging trend allowing Solidity to be used for smart contracts on blockchains
 equipped with parallel processing. For instance in Solana, while Rust is the main language,
 Solidity can also be used by utilizing the Solang compiler.

 In the wider crypto-ecosystem, parallel processing is being adopted by many new projects.
 We've discussed a few here, highlighting Solana due to recent interest. Parallel processing
 is key to improving throughput and is a selling point for many projects.

 Technical Deep Dive: Parallel Execution 25

 References
 https://docs.solana.com/validator/runtime

 https://github.com/solana-labs/solana

 https://arxiv.org/abs/2203.06871

 https://aptos.dev/papers/whitepaper.pdf

 https://docs.sui.io/research

 https://docs.monad.xyz/technical-discussion/execution/parallel-execution

 https://docs.sei.io/advanced/parallelism

 https://vara-network.io/

 https://docs.cosmwasm.com/docs/

 Technical Deep Dive: Parallel Execution 26

https://docs.solana.com/validator/runtime
https://github.com/solana-labs/solana
https://arxiv.org/abs/2203.06871
https://aptos.dev/papers/whitepaper.pdf
https://docs.sui.io/research
https://docs.monad.xyz/technical-discussion/execution/parallel-execution
https://docs.sei.io/advanced/parallelism
https://vara-network.io/
https://docs.cosmwasm.com/docs/

 New Binance Research Reports

 Exploring Tokenomics Models and
 Developments

 An overview of developments in
 Tokenomics

 A Primer on On-Chain Gaming

 An introduction to on-chain gaming

 Are We Entering a Bull Market? Top
 10 Narratives to Follow

 The top 10 narratives to follow as we
 go through the next few months

 Monthly Market Insights - December
 2023

 A summary of the most important
 market developments, interesting
 charts and upcoming events

 Technical Deep Dive: Parallel Execution 27

https://www.binance.com/en/research/analysis/exploring-tokenomics-models-and-developments
https://www.binance.com/en/research/analysis/exploring-tokenomics-models-and-developments
https://www.binance.com/en/research/analysis/exploring-tokenomics-models-and-developments
https://www.binance.com/en/research/analysis/a-primer-on-on-chain-gaming
https://www.binance.com/en/research/analysis/a-primer-on-on-chain-gaming
https://www.binance.com/en/research/analysis/are-we-entering-a-bull-market-top-10-narratives
https://www.binance.com/en/research/analysis/are-we-entering-a-bull-market-top-10-narratives
https://www.binance.com/en/research/analysis/are-we-entering-a-bull-market-top-10-narratives
https://www.binance.com/en/research/analysis/monthly-market-insights-2023-12
https://www.binance.com/en/research/analysis/monthly-market-insights-2023-12
https://www.binance.com/en/research/analysis/monthly-market-insights-2023-12

 About Binance Research
 Binance Research is the research arm of Binance, the world’s leading cryptocurrency
 exchange. The team is committed to delivering objective, independent, and comprehensive
 analysis and aims to be the thought leader in the crypto space. Our analysts publish
 insightful thought pieces regularly on topics related but not limited to, the crypto
 ecosystem, blockchain technologies, and the latest market themes.

 Derek Ho

 Protocol Specialist

 Derek is a Protocol Specialist at Binance, working on
 protocol and security with various teams. He enjoys
 reading whitepapers, understanding mathematical
 formulas, and analyzing blockchain code. He holds an
 engineering degree from Cambridge University.

 Technical Deep Dive: Parallel Execution 28

 Resources

 Read more here Share your feedback here

 General Disclosure: This material is prepared by Binance Research and is not intended to be relied upon as a
 forecast or investment advice, and is not a recommendation, offer or solicitation to buy or sell any securities,
 cryptocurrencies or to adopt any investment strategy. The use of terminology and the views expressed are
 intended to promote understanding and the responsible development of the sector and should not be
 interpreted as definitive legal views or those of Binance. The opinions expressed are as of the date shown above
 and are the opinions of the writer, they may change as subsequent conditions vary. The information and
 opinions contained in this material are derived from proprietary and non-proprietary sources deemed by
 Binance Research to be reliable, are not necessarily all-inclusive and are not guaranteed as to accuracy. As
 such, no warranty of accuracy or reliability is given and no responsibility arising in any other way for errors and
 omissions (including responsibility to any person by reason of negligence) is accepted by Binance. This material
 may contain ’forward looking’ information that is not purely historical in nature. Such information may include,
 among other things, projections and forecasts. There is no guarantee that any forecasts made will come to
 pass. Reliance upon information in this material is at the sole discretion of the reader. This material is intended
 for information purposes only and does not constitute investment advice or an offer or solicitation to purchase
 or sell in any securities, cryptocurrencies or any investment strategy nor shall any securities or cryptocurrency
 be offered or sold to any person in any jurisdiction in which an offer, solicitation, purchase or sale would be
 unlawful under the laws of such jurisdiction. Investment involves risks.

 Technical Deep Dive: Parallel Execution 29

https://research.binance.com/en/analysis
https://tinyurl.com/bnresearchfeedback

