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+ Parallel computing can increase throughput of blockchains by utilizing
computing resources more efficiently.

+ Traditional blockchains operate in series, but a number of newer projects
support parallel computing. While there are several ways to do this, this report
focuses on techniques to parallelize the execution step.

& Software design for parallel computing has many pitfalls that can lead to critical
bugs. Several mechanisms exist to address these challenges, with pros and
cons. We discuss three mechanisms and example projects® that use them:

o Actor model (e.g. Vara): solves critical issues, but has computation
overhead, may miss opportunities to parallelize, and can be difficult for
developers to reason about or debug if the program is complex.

o Memory locks (e.g. Solana, Sui and Sei): gives developers finer-grained
control of the program, potentially increasing throughput. However, it is
vulnerable to critical bugs that can be hard to identify, such as deadlocks.

o Software transactional memory (“STM”) (e.g. Aptos and Monad): often
achieves high parallelism without risk of the critical bugs seen in the
memory lock model. Simpler for decentralized application (“dApp”)
developers, as added complexity is dealt with by the base layer. This makes
implementation potentially complex for base layer devs. Also, throughput
can be worse than serial computation in some cases.

+ Projects can also use single instruction multiple data (“SIMD”) processing,
which improves speed of certain calculations, e.g. cryptographic verifications.

! Understanding these different technologies gives us insight into different projects, but we need to
consider them with other factors to form conclusions about the projects. These example projects
were chosen simply as examples to illustrate the points made in this report.



2.1

The recent surge in Solana's price has piqued interest in its distinctive design choices and
technologies, especially in comparison to the frequently discussed Ethereum. There are
certain areas where Ethereum has historically stumbled, but Solana has excelled. An
example is Sealevel, a feature that allows the Solana Virtual Machine ("SVM") to compute
programs (normally referred to as "smart contract"s on other blockchains) in parallel. This
enables Solana to achieve significantly higher throughput than a conventional Ethereum
Virtual Machine (“EVM”).

Another noteworthy aspect is Solana's extensive use of the Rust language, not only at its
core layer but also for program development. This approach assists in mitigating specific
vulnerabilities and enhancing system performance.

In this report, we'll concentrate on parallel execution. We will delve into its technical
aspects and obstacles that software developers must overcome. We will explore various
strategies for dealing with these challenges, their advantages and disadvantages, and
examples of different blockchains that utilize them for parallel processing.

This report marks the inaugural issue of our Technical Series — a deeper dive into the nuts
and bolts of various blockchain technologies than our usual coverage. Our goal is to help
you unravel the intricacies of certain technologies and techniques used in the crypto space.

You may run across an equation or two, along with snippets of code. For those with a
tech-savvy streak, this deeper dive may prove particularly engaging. However, we made it a
point to write this report in an accessible way to anyone in the crypto space, regardless of
their background. We hope you find this report useful and insightful.



2.2

Executing in parallel can improve throughput by utilizing hardware more efficiently.

Parallel execution employs simultaneous computation of multiple tasks on two or more
processing units. The common perception is that parallel execution enhances throughput.
But, why should that be the case?

First of all, parallel computation isn’t always faster — it can sometimes be slower. It is
normally faster than serial computation because:

1. Hardware with multiple slower cores is easier to build and require less energy to
operate than a single fast core
2. Processes in a program can often run in parallel

Firstly, creating and operating a fast single core processor is much more difficult and
expensive compared to multiple slower cores. This is why processor clock speeds have
remained mostly stagnant for 2 decades, while we see a proliferation in the quantity of
cores. A fast single core will consume more energy because it requires higher voltage, and
face other issues such as limitations with cache and memory.

Secondly, programs don't automatically benefit from multiple cores, leading to our next
point. Most programs can be parallelized to a certain degree. The greater the degree of
parallelization (as opposed to being serial), the more a program can theoretically
leverage multi-core hardware. However, writing parallel software can be challenging
and carries an increased risk of bugs. Therefore, the advantage of higher throughput by
switching to multi-core systems should be analyzed in light of these aspects.

2.3

There are many opportunities to parallelize, including overlapping the consensus and
execution stages. In this report, we focus on methods to parallelize the execution
stage

One way to parallelize is to overlap (“pipeline”) different validator operation stages. For
example, proof-of-stake (“POS”) validators need to share (“gossip”) transaction
information, elect a block producer, execute the proposed block, vote on the block, and
carry out several other operations. Conventionally, POS chains perform these tasks in



series. Newer blockchains are exploring methods to process some of these steps in
parallel.

Protocols can also use methods such as directed acyclic graphs (“DAG”s) for its consensus,
which can be applied to proof of work or proof of stake systems. Sui, for example, utilizes
DAG for its consensus.

Parallelization can also be applied to the execution of transactions themselves. Nodes need
to carry out a sequence of transactions to ascertain state transitions. Parallelizing this
process could boost efficiency and execution speed. Our discussion here mainly focuses on
this aspect—parallelizing transaction execution.

Figure 1: Parallel computing comes in many forms. This report focuses on parallel
computing during the execution stage
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3.1

Sharding reduces workload on a given client, task parallelism utilizes multiple cores
for different tasks, and data parallelism improves performance of certain types of
operations, such as cryptographic validation.

Let’s look at a non-exhaustive list of approaches different blockchains have used for
parallel execution.

e Sharding: split execution work between validators

e Task parallelism: process non-dependent transactions in parallel using multiple
cores

e Data parallelism: process similar instructions on different data simultaneously
(SIMD)

(Execution) Sharding

The blockchain is split (“sharded”) into multiple parts, and transactions related to each
shard is processed by the assigned nodes separately. Sharding may be considered a
parallel processing technique from a network perspective. From an individual node’s
perspective, they may still be processing transactions in series. However, a given node
processes a fraction of all transactions submitted to the network, resulting in lower
workload and increased throughput.

TON is an example of a chain that implements this. Ethereum planned to do this at one
point, before opting for the roll-up centric design. Note that Ethereum’s current plan,

Danksharding, is a slightly different concept, as it shards transaction data, without splitting

execution workload.
We won’t deep dive into this here.
Task parallelism

An execution client executes multiple transactions simultaneously, using multiple
processing units. For example, if a node’s hardware has 16 cores, it may be able to
compute 16 transactions simultaneously, in batches.



Solana falls under this category. Solana has no shards, so an execution client needs to
execute all transactions in a block. Execution is quicker because nodes can utilize its
hardware more efficiently by taking advantage of multiple cores.

Data parallelism (Single instruction multiple data, or SIMD)

Task parallelism computes multiple instructions on multiple data (“MIMD”). On the other
hand, data parallelism (the way we define it in this report) performs a single instruction on
multiple data (“SIMD”)2. SIMD operates at a low level, mostly for manipulating vectors and
matrices, which are arrays of numbers. This is useful for many types of operations, notably
cryptographic hashing and verification.

Figure 2: We deep dive into parallel computing a full block (task and data parallelism),
rather than sharding
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3.2

Tasks which are independent can be computed in parallel, and result in the same
outcome had they been computed in series. The program execution speed is limited
by the longest chain of dependent tasks.

Parallelism can increase throughput, but it comes with challenges. One of the first
challenges is to determine if two tasks can be computed in parallel. Let’s introduce a
concept called independence: Task A and Task B can be executed in parallel if they are
independent.

> Not to be confused with Solana IMprovement Docs (also called SIMD)



Cases when tasks are dependent
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Most people would (correctly) guess that transactions (“txs”) in Case 1 are independent,
but not in Case 2. Imagine if there are two CPU cores, each core handling one transaction.
In Case 1, the second transaction can happen regardless of the outcome of the first, and
vice versa. One transaction can fail or we can change the sequence of transactions, and the
final outcome will still be the same.

This is not true in Case 2. If Bob has no BTC initially, the outcome of tx1 depends on what
happens in tx0.

It may be tempting to conclude that two transactions are parallelizable if the sequence
does not matter. In other words, if we can flip tx0 and tx1 and get the same outcome, are
the transactions independent? The answer is no. Even when their order doesn't matter,
two transactions can still be dependent. Consider this case:

Case 3:
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In Case 3, the sequence of transactions doesn’t affect the outcome. tx1 can happen before
tx0. However, these two transactions are still dependent. Imagine these two processes
(“threads”) running concurrently:



Figure 2: An example of a race condition, a type of software bug

BTC balance
Thread 0 Thread 1 Alice Carol Bob
Initial state 2 2 0

Read Alice’s balance (2BTC)

Read Carol’s balance (2BTC)
Read Bob’s balance (OBTC)

Read Bob’s balance (OBTC)
Update balances (Alice:
1BTC, Bob: 1BTC)

Update balances (Carol:

1.5BTC, Bob: 0.5BTC)
Write new balance to 1 2 1
memory

Write new balance to 1 1.5 0.5

memory

Bob was supposed to have 1.5 BTC, but instead, he has only 0.5 BTC. If Thread 0 had
completed later, Bob would have had 1 BTC, which is still not right. As we can see, the
result is unpredictable because different components can interact in various ways,
depending on when they happen. This turns out to be a significant issue.

Conditions for (in-)dependence
Two tasks are dependent if they fulfill one of these conditions:

e The output of one task writes to the input of the other — e.g. Alice transfers ETH
to Bob (output), and Bob (input) transfers ETH to Carol.

e The output of multiple tasks write to the same memory location - e.g. both Alice
and Carol transfer ETH to Bob (output).

For the math-inclined, a more formal statement is Bernstein’s conditions. For two tasks i
and j, where M(i) are memory locations i modifies, and R(i) are memory locations that i
reads, i and j are independent if:

MO NMG) =MAENRG) =RONM3G) =0
These math symbols effectively say the same thing as our two bullet points above.

Back to our question: how parallelizable is a program? It is determined by how dependent
our tasks are. The program is held back by the longest chain of dependent tasks, which
needs to be executed in series.



Blockchain transactions often don't depend heavily on each other, so they can run in
parallel to a large extent. This provides a lot of opportunities to speed up the execution by
working on multiple transactions simultaneously.

Issues with task parallelism and methods to deal with them

Recall that task parallelism refers to multiple instructions on multiple data (MIMD)
processes, the ability to execute multiple different tasks simultaneously. While this can
increase throughput, it also opens a can of worms due to concurrency issues.

Loosely speaking, parallel computing refers to having more than one
processor core running at the same time. Concurrent computing, a closely
related term, refers to a system where multiple parts can run in an
out-of-order fashion, without affecting the outcome. In our case,
concurrency enables parallel computing. If it doesn’t immediately make
sense, don’t worry. Many use the two terms interchangeably, and it will
work for our purposes too.

Concurrent programs are prone to software bugs. A non-exhaustive list includes:

x race conditions, as we saw earlier

x reentrancy issues

x deadlocks, where two or more tasks wait for one another indefinitely, and a related
condition called livelocks

x non-composability, where a software component may be correct on its own, but
have critical bugs if used in a larger program

‘3’ BINANCE RESEARCH Technical Deep Dive: Parallel Execution 10



% priority inversion, a condition where low priority task may indirectly block a higher
priority task due to intricacies on how a scheduler works

x resource starvation, where some tasks consume more than its fair share of
resources, starving other tasks of the resources they need

The first four are critical bugs. Priority inversion and resource starvation may be critical
depending on the situation.

Additionally, concurrent programs are harder for developers to manage. This is because
their design is more complex, and it's more difficult to figure out and fix issues.

However, if we can address these challenges, the advantages of parallel computing can
exceed the difficulties. Let's explore some methods to manage this (known as "concurrency
control") and take a look at some example projects that use them:

e Message passing model:
o Actor model (used by Vara)
e Shared memory model, which can be further categorized into:
o Memory locks such as mutual exclusion (mutex) (used by Solana, Sui and
Sei)
o Optimistic concurrency control or software transactional memory
(OCC/STM) (used by Aptos and Monad)

Solves many critical problems with concurrency. However, the global state cannot be
directly observed, which makes it harder for the dApp developer to reason about and
debug. There may also be missed opportunities to parallelize

The actor model assigns different actors their private state. An actor can directly modify its
private state, but only indirectly modify another actor’s state by passing a message. When
an actor receives a message, it decides how to handle it, potentially modifying its own state
in response to the message.



Figure 3: Actors have private states that they have exclusive access to. Actors can also
send or receive messages from other actors.
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Private state
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Actor
Private state

Private state

How does this enable parallelism? Each actor can process their own operations
sequentially, while the program (with many actors) assigns a processing thread to each
actor. Since actors can only access their own data, which is unique, there cannot be
situations where multiple actors are reading or writing to the same memory location.
Therefore, assigning a thread to each actor enables parallel computing, without risk of data
dependency issues.

CosmWasm (which is a smart contract framework, not a blockchain) also uses the actor
model. It uses it to avoid reentrancy vulnerabilities on smart contracts, one of the biggest
smart contract vulnerabilities on Ethereum Virtual Machines (EVMs). It can potentially be
used to enable parallel computing as well, but CosmWasm does not support this yet, as of
writing.

While the actor model solves many issues with concurrency, it is not perfect. A single actor
processes its tasks sequentially, which can miss opportunities to parallelize. Let’s see an
example, using a hypothetical decentralized vegetable store serving several customers:



Figure 4: Three actors (the buyers) querying an actor’s (vege store’s) private state by
exchanging messages. In a basic actor model, the vege store above needs to process
each message one by one, although each operation is independent

Actor: buyer 0 Actor: buyer 1 Actor: buyer 2
Private state Private state Private state
e 1BTC e 0.5BTC e 0.1BTC
A
“How much “How much “How many cucumbers
is a carrot?” is a carrot?” do you have?”
0.5 mBTC 0.5 mBTC 10

Actor: Vege store
“Your source of super expensive
decentralized vege”

Private state:

e Cucumbers: 10 at 1 mBTC each
e Carrots: 5 at 0.5 mBTC each

. Bank balance: 2 BTC

Despite the vegetable store actor processing messages sequentially, our independence
conditions suggest they could be handled concurrently. Multiple processes can read the
same datapoint in parallel. Is there a more effective model that allows the store to disclose
its private state like a public price list??

Also, there's no single location to observe the system's global state. A programmer might
examine each private state to understand the bigger picture, but it can sometimes be
complex. Interwoven private states can generate a global state that's not instantly
visible, making system behavior prediction challenging.

3 This can actually be done with some tweaks. For example, we can improve our basic actor model
by defining some values as immutable (such as the price) and some as mutable (such as the number
of items and balances). Immutable values can be safely read directly by any actor because there is
no possibility of a process modifying it. However, implementing this increases complexity.



Figure 5: It’s a bad idea to have duplicate states if they are meant to be global, but this
can happen in a poorly implemented program using the actor model. Alice thinks Bob is
happy, but Bob is actually unhappy. The outcome of an interaction is unpredictable. If
we try to piece together the global state, we’ll realize it is either inconsistent or more
complicated than we initially thought.

Global state:

Alice’s mood: happy?

Bob’s mood: ??

Alice Bob

Alice’s mood: happy
My mood: unhappy

My mood: happy
Bob’s mood: happy

Achieves high concurrency if implemented correctly. May be easier for dApp
developers to reason about. Has many pitfalls that lead to critical software bugs, but
many (not all) are mitigated by using a language with strong thread-safety (eg: Rust).

In the memory lock model, processes have access to all memory locations (i.e. data) by
default. If a process wishes to access some data, it ‘locks’ that memory location before
starting its process. Once the process is complete, it unlocks that memory location to
release it, so other processes can use it again.



Figure 6: In a mutex lock, every process wishing to access memory will first lock it.
Another process wishing to access the data will wait until it is unlocked, before locking
it again and using the data.
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Data, but Process A
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wait (>|  Process B

I'm done using o
Data, so I'll unlock it Process A
Process B Locks data m

Cannot access
locked data
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Data, so | can now
lock it and use jt

Source: Binance Research
But we can do better. Recall the conditions for independence. Another way of stating it is:

Multiple tasks can access the same memory location only if none of them modifies its
contents

We can have a mechanism that checks every process wishing to access memory for
whether it intends to read or modify the data. The mechanism disallows a process from
accessing the data if the rules of independence are violated. It effectively has two types of
keys, read-only keys and a write (modify) key.
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Figure 7: We can have a locking mechanism which allows either a) multiple read
processes or b) one write process to access the data

Read process
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Let’s have a look at Solana’s code. In Solana, memory locations are called accounts. An
account can contain data, and transactions may need to lock one or more accounts in order
to access the data inside. Below is one part of the code that keeps track of the accounts
that have been locked.

Figure 8: Solana data structure that contains information on account locks. This data
structure itself uses Mutex (line 105) which ensures that only 1 thread at a time can
access the list of account locks.

ct Accounts {

pub accounts_db: Arc<AccountsDb>,

pub(crate) account_locks: Mutex<AccountLocks>,


https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

Figure 9: Usage of RwLock<> in Solana’s code, which is similar to Mutex but allows
multiple read operations to happen concurrently

uct TransactionExecutor {
sig_clear_t: JoinHandle<()>,
sigs: Arc<RwLock<PendingQueue>>,
cleared: Arc<RwLock<Vec<u64>>>,

exit: Arc<AtomicBool>,
counter: AtomicU64,
client: Arc<RpcClient>,

Back to our vege store illustration. With memory locks, the three buyer’s queries can be
performed in parallel, because they do not modify the data.

Figure 10: Multiple read operations are allowed, so these three buyers can read the
database concurrently. It is as if the store owner has a board displaying prices and
current inventory levels. Multiple people can read the board at the same time.

There are 10
cucumbers

A carrot costs
0.5 mBTC

A carrot costs
0.5 mBTC

Process: buyer 0 Process: buyer 1 Process: buyer 2

Database

Cucumbers: 10 at 1 mBTC each
Carrots: 5 at 0.5 mBTC each

Store bank balance: 2 BTC
Buyer 0’s balance: 1 BTC

Buyer 1’s balance: 0.5 BTC
Buyer 2’s balance: 0.1 BTC

While it sounds conceptually simple, memory locks are complicated to work with and
error-prone. In fact, some strongly discourage using this model. One of Go’s (or Golang, the
programming language) slogan is “Don’t communicate by sharing memory; share memory
by communicating.”

Using memory locks is doing precisely what Go says you shouldn’t do (note that memory
locks are available in Go despite this slogan). The reason is there are many pitfalls when
writing code with memory locks. It’s easy to mis-coordinate the locking process. A


https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

process could lock a data point, complete its process, and forget to unlock it. Or the
process is terminated before it can unlock a data point. Tasks that need to access that
memory location are now locked out indefinitely.

Deadlocks are another pitfall, and can be difficult to identify. A deadlock happens when
two processes need at least two locks, but have each acquired one. They will wait on each
other indefinitely, because neither can acquire the other lock it needs.

Figure 11: A deadlock. Process A and B wait for each other forever.

I'd like to access Data 1,
but it's locked by
Process B. So I'll wait

until Process B is done

Process B

Process A

I'd like to access Data 0,

but it's locked by
Process A. So I'll wait
until Process A is done

Data can also be corrupted, called mutex poisoning in the Rust community, when a thread
holding a lock aborts (‘panics’) due to an error. Unlike our example earlier of a lock never
being returned, Rust has safety mechanisms to ensure a lock is returned even if a process
terminates. However, the contents of the data may be corrupted, as the thread may have
partially modified the data before crashing.

Programs designed with memory locks are also normally not composable—a software
module could work properly on its own, but fail when used as part of a larger program. A
programmer may have written code in a way that ensures no deadlocks happen within the
module, but when interacting with other modules that access the same data, a deadlock
may be created. Also, different modules may use different mutex logic—one using a guard
and one using a more manual approach—which can lead to mis-coordination in handling
the memory locks. These situations are likely to result in critical bugs.

With all these issues, why is anyone using memory locks at all? One important factor could
be because of Rust (the programming language), which allows programmers to write
code with memory locks in a safer way than was possible with previous languages such
as Java and C#. Incidentally, both Solana and Sui are written in Rust*. Sei is a Cosmos

“ Deadlocks are still a potential issue when programming with Rust.



chain, written in Go, but its parallelization module is written in Rust. With the safety
afforded by Rust, these projects can benefit from the advantages of using memory locks.

Figure 12: Rust’s mascot (left) and Go’s mascot (right) arguing. If you don’t get the
joke: Rust says Go is only good at the actor model. Go responds by poking fun at
Rust’s notoriously strict compiler. Rust’s compiler enables memory locks to be used
relatively safely, but it also causes many new Rust programmers to spend more time
“fighting” with compiler errors than actually writing code. Rust hits back by saying
that because of the compiler, Rust doesn’t have data races (a type of race condition, a
critical bug we demonstrated earlier), unlike Go.

All you do is act

" Atleast | don't fight with
my compiler all day and

move slowly

| don’t race

Memory locks normally offer finer-grained control than the actor model, making it easier
for developers to optimize an application. A program using the memory lock model may
also be easier to reason about than one using the actor model, especially in simple cases.

In complex programs, this point is debatable.

When designing a program with memory locks, there is a tradeoff in the level of
granularity. Highly granular locks enable greater parallelism, because it avoids locking
parts of data that don’t need to be locked. But high granularity also results in more
overhead due to the greater complexity of managing locks, and a higher risk of creating
deadlocks, as it is more complex for programmers to reason about.

Solana programs (aka smart contracts) are encouraged to split their state across several
accounts, which increases granularity. For example, a decentralized exchange (“DEX”) can
store information on all its liquidity pools (“LPs”) in a single account. However, this may be
non-optimal, as transactions wishing to access this information will lock the entire blob of
data, preventing others from accessing it. On the other end of the spectrum, the program
could have a separate account for each LP pool, which increases parallelism but at the cost
of greater overhead and risks.



Figure 13: Higher granularity improves parallelism because of lower contention
(conflicts)...but increases computation overhead and risk of creating deadlocks

Low granularity: large blob of data has one High granularity: each LP pool has its own
lock. Process B waits although it is needs to lock. Process A and B can operate
access a different part of the data concurrently
DEX LP Pools DEX LP Pools
BTC- BNB- BTC- BNB-
ETH usDC ETH usbC
SOL- BTC- SOL- BTC-
ETH USDT ETH usDT
[ y [ 1N
v ' Y
Process A Process B Process A Process B

Similar to the actor model, handling memory locks requires extra work from the software
programmer. For example on Solana, transactions need to explicitly declare the accounts
(i.e. memory locations) they will access. The Solana VM then uses this information to lock
data associated with those accounts.

Figure 14: Transactions on Solana need to declare the memory locations (“accounts”)
that it will read or modify. This code defines the format of this information. The runtime
uses this information to decide which transactions to run in parallel.

pub struct AccountInfo<'a> {

pub key: &'a Pubkey,

pub lamports: Rc<RefCell<&'a mut u64>>,

eld ) I
pub data: Rc<RefCell<&'a mut [u8]>>,
‘ )
pub owner: &'a Pubkey,
|
pub rent_epoch: Epoch,
W I EY:
pub is_signer: bool,
oun
pub is_writable: bool,
oun

pub executable: bool,
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STM normally achieves high parallelism without the risks of deadlocks. dApp
developers do not need to deal with increased complexity, but base layer
implementation can be difficult. Throughput can be low if there are many
dependencies, as transactions may retry many times before succeeding.

Software transactional memory (“STM”) takes an optimistic approach to shared memory.
It runs many threads in parallel, disregarding whether they are independent or not. Once
done, it checks for potential conflicts. The highest priority task in any conflict is committed,
while the others are aborted and rerun (“retry”) in the next cycle. This happens until all
processes are executed.

Figure 15: Simplified illustration of Aptos’ STM design: Tx0, Tx1 and Tx2 are taken from
the queue and run optimistically in parallel. In Cycle 0, TxO modifies Data 0, Tx1
modifies Data 2 and 3, and Tx2 modifies Data 2. After the cycle, Tx1 and Tx2 notice that
they had both modified Data 2 (a conflict). Because Tx1 is earlier in the sequence of
transactions, Tx1 commits and Tx2 aborts. Tx2 retries in the next cycle.

Transaction
sequence

Thread 0

Thread 1

Thread 2

Cycle 0 Cycle 1 Cycle 2

There are many different designs of STM. Aptos’ STM design uses a multi-versioned data
structure to detect and handle conflicts. When transactions modify any value, the system
logs the change and attaches a new version number, while keeping track of the historical
values. All STM implementations require some form of log like this. The log takes place in
memory before being committed, which can lead to high memory requirements.

Let’s return to our vege store illustration. If we were to use STM, it would look something
like this:

Figure 16: using STM on the vege store. After Cycle 0, all three threads note that there
had been no conflict, so all three transactions are committed. In Cycle 1, Tx4 and Tx5



see that the information they read or modified (number of carrots) had been changed
by Tx3 in the same cycle. Since Tx3 is ordered before Tx4 and Tx5 in the sequence of
transactions, Tx3 is committed, and Tx4 and Tx5 abort. Tx4 and Tx5 retry in Cycle 2.

Tx6 Tx7 Tx8 Tx9 Tx10

num of cucumbers carrots

1 1
1
Thread 0 TxO0: buyer 0 reads | Tx3:buyerObuys2 |1 |
price of carrots || carrots A :
1 1 P
! AR :
Thread 1 Tx1: buyer 1 reads | Tx4:buyer1reads [/ | :
price of carrots i| num of carrots .4 :
1 D*cessvsosscnncerecrossnnsconns
! A A
Thread 2 Tx2: buyer 2 reads | Tx5: buyer 3 buys 3 | :
1 | 1
: |
1

Cycle 0 Cycle 1 Cycle 2

At first glance, STM’s concept of aborting and retrying many times may seem wasteful.
Also, the chance of conflict increases with the number of threads. If we run 100 threads,
we are more likely to have conflicts than if we run 5 threads. In a program with many
dependencies, a task can abort many times before finally committing. It also has
computation overhead of managing the process. This can ultimately result in lower
performance than simple serial execution.

Nevertheless, STM results in higher throughput in many cases. It generally achieves
comparable parallelism to a memory lock model with high granularity, but without the risk
of deadlocks. Also, there are clever ways to design the system so that an aborted task does
not need to be recomputed from scratch, or to detect potential conflicts earlier in a cycle
for tasks that are being retried.

It is also easier on the dApp developer. The dApp developer can write a smart contract as
if it is a serial program, yet benefit from parallel computation. However, the base layer
(e.g. Aptos’ VM) needs to handle the complexity of concurrency and parallelizing the
execution, making STM complex for the base layer developers (e.g. the Aptos core team
writing the code for the blockchain). STM is also an area of active research, so some
aspects of the model may not be fully understood yet.



3.3

SIMD improves computation speed for certain types of operations, such as
cryptographic verifications.

Data parallelism, in this report, refers to operations with a single instruction on multiple
data (SIMD). Instructions are quite basic computing units, such as addition and
multiplication. It turns out that this is useful when dealing with vectors or matrices. SIMD
allows us to perform vector or matrix operations very quickly.

Figure 17: In this example, we encrypt our secret data {1.5, 3.2} by multiplying it with
the encryption key matrix. To decrypt, we multiply the inverse of this matrix with the
encrypted data. If you remember matrix multiplications, you will see that we retrieve
the original secret data. Real-world ciphers such as Advanced Encryption Standard
(AES) perform similar matrix multiplications as part of a larger, much more
sophisticated algorithm.
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This is not a math lesson, so we won’t dive into this. The thing to note is that vectors and
matrices are very useful in many areas of computer science, such as processing large
amounts of data and performing cryptographic operations. The basic example above
shows how matrices can be used for encryption and decryption using an encryption key.

SIMD can be done using CPUs or GPUs. Many CPUs today have 64-bit processors. This
means that in each clock cycle, a processor can operate on 64-bit data. Some processors,
such as AVX-2 and AVX-512, expand this register to 256 or 512 bits. With a 256 bit register,
the processor can simultaneously operate on four 64-bit numbers, for example.



GPUs can also perform SIMD operations, where a single task scheduler can assign similar
instructions to many processing units. With several thousand cores, GPUs are performant in
cases where a single instruction is used across a very large dataset.

Vector and matrix operations involve a lot of repeated additions and multiplications on
arrays of numbers. SIMD can speed up these operations significantly.

Let’s look at Solana’s code, showing the use of the AVX processor.

Figure 18: Code snippet performing cryptographic verification during Solana’s Proof of
History (PoH). Depending on the hardware being used, Solana will use different
algorithms for verification. For example, if it detects an AVX-512 processor, it will
verify using SIMD with 16 data points per cycle (lines 766 and 767).

if api().is_some() {
if has_avx512 && self.len() >= 128 {
self.verify_cpu_x86_simd(start_hash, simd_len: 16)
} else if has_avx2 && self.len() >= 48 {
self.verify_cpu_x86_simd(start_hash, simd_len: 8)
} else {

self.verify_cpu_generic(start_hash)

}
} else A
self.verify_cpu_generic(start_hash)

Let’s recap what we have covered. Parallel processing can increase throughput (or reduce
cost) by utilizing resources more efficiently. The execution stage is one of several areas we
can parallelize, but it presents issues that software developers must overcome. Incorrectly
handling these issues results in critical software bugs. We discussed a few solutions, which
is summarized below, including their pros and cons:


https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d

Figure 19: Pros and cons of approaches discussed in this report
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Will Ethereum incorporate parallel processing? It is unlikely in the near future,

considering it is pursuing a rollup-centric model. Nevertheless, there is promising potential

for EVMs equipped with parallel processing capabilities (e.g. Monad) and rollups that use
parallel processing at the sequencer level and settle on Ethereum (e.g. Eclipse). There is

also an emerging trend allowing Solidity to be used for smart contracts on blockchains
equipped with parallel processing. For instance in Solana, while Rust is the main language,

Solidity can also be used by utilizing the Solang compiler.

In the wider crypto-ecosystem, parallel processing is being adopted by many new projects.
We've discussed a few here, highlighting Solana due to recent interest. Parallel processing

is key to improving throughput and is a selling point for many projects.
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