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 Key Takeaways 
   Parallel computing can increase throughput of blockchains by utilizing 

 computing resources more efficiently. 

   Traditional blockchains operate in series, but a number of newer projects 
 support parallel computing. While there are several ways to do this, this report 
 focuses on techniques to parallelize the execution step. 

   Software design for parallel computing has many pitfalls that can lead to critical 
 bugs. Several mechanisms exist to address these challenges, with pros and 
 cons. We discuss three mechanisms and example projects  1  that use them: 

 ○  Actor model (e.g. Vara): solves critical issues, but has computation 
 overhead, may miss opportunities to parallelize, and can be difficult for 
 developers to reason about or debug if the program is complex. 

 ○  Memory locks (e.g. Solana, Sui and Sei): gives developers finer-grained 
 control of the program, potentially increasing throughput. However, it is 
 vulnerable to critical bugs that can be hard to identify, such as deadlocks. 

 ○  Software transactional memory (“STM”) (e.g. Aptos and Monad): often 
 achieves high parallelism without risk of the critical bugs seen in the 
 memory lock model. Simpler for decentralized application (“dApp”) 
 developers, as added complexity is dealt with by the base layer. This makes 
 implementation potentially complex for base layer devs. Also, throughput 
 can be worse than serial computation in some cases. 

   Projects can also use single instruction multiple data (“SIMD”) processing, 
 which improves speed of certain calculations, e.g. cryptographic verifications. 

 1  Understanding these different technologies gives us insight into different projects, but we need to 
 consider them with other factors to form conclusions about the projects. These example projects 
 were chosen simply as examples to illustrate the points made in this report. 
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 Overview 

 Introduction 
 The recent surge in Solana's price has piqued interest in its distinctive design choices and 
 technologies, especially in comparison to the frequently discussed Ethereum. There are 
 certain areas where Ethereum has historically stumbled, but Solana has excelled. An 
 example is Sealevel, a feature that allows the Solana Virtual Machine ("SVM") to compute 
 programs (normally referred to as "smart contract"s on other blockchains) in parallel. This 
 enables Solana to achieve significantly higher throughput than a conventional Ethereum 
 Virtual Machine (“EVM”). 

 Another noteworthy aspect is Solana's extensive use of the Rust language, not only at its 
 core layer but also for program development. This approach assists in mitigating specific 
 vulnerabilities and enhancing system performance. 

 In this report, we'll concentrate on parallel execution. We will delve into its technical 
 aspects and obstacles that software developers must overcome. We will explore various 
 strategies for dealing with these challenges, their advantages and disadvantages, and 
 examples of different blockchains that utilize them for parallel processing. 

 This report marks the inaugural issue of our Technical Series — a deeper dive into the nuts 
 and bolts of various blockchain technologies than our usual coverage. Our goal is to help 
 you unravel the intricacies of certain technologies and techniques used in the crypto space. 

 You may run across an equation or two, along with snippets of code. For those with a 
 tech-savvy streak, this deeper dive may prove particularly engaging. However, we made it a 
 point to write this report in an accessible way to anyone in the crypto space, regardless of 
 their background. We hope you find this report useful and insightful. 
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 Why parallel? 
 Executing in parallel can improve throughput by utilizing hardware more efficiently. 

 Parallel execution employs simultaneous computation of multiple tasks on two or more 
 processing units. The common perception is that parallel execution enhances throughput. 
 But, why should that be the case? 

 First of all, parallel computation isn’t always faster — it can sometimes be slower. It is 
 normally  faster than serial computation because: 

 1.  Hardware with multiple slower cores is easier to build and require less energy to 
 operate than a single fast core 

 2.  Processes in a program can often run in parallel 

 Firstly, creating and operating a fast single core processor is much more difficult and 
 expensive compared to multiple slower cores. This is why processor clock speeds have 
 remained mostly stagnant for 2 decades, while we see a proliferation in the quantity of 
 cores. A fast single core will consume more energy because it requires higher voltage, and 
 face other issues such as limitations with cache and memory. 

 Secondly, programs don't automatically benefit from multiple cores, leading to our next 
 point. Most programs can be parallelized to a certain degree.  The greater the degree of 
 parallelization  (as opposed to being serial),  the  more a program can theoretically 
 leverage multi-core hardware  . However, writing  parallel  software can be challenging 
 and carries an increased risk of bugs  . Therefore,  the advantage of higher throughput by 
 switching to multi-core systems should be analyzed in light of these aspects. 

 Which operations can we 
 parallelize? 

 There are many opportunities to parallelize, including overlapping the consensus and 
 execution stages. In this report, we focus on methods to parallelize the execution 
 stage 

 One way to parallelize is to overlap (“pipeline”) different validator operation stages. For 
 example, proof-of-stake (“POS”) validators need to share (“gossip”) transaction 
 information, elect a block producer, execute the proposed block, vote on the block, and 
 carry out several other operations. Conventionally, POS chains perform these tasks in 
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 series. Newer blockchains are exploring methods to process some of these steps in 
 parallel. 

 Protocols can also use methods such as directed acyclic graphs (“DAG”s) for its consensus, 
 which can be applied to proof of work or proof of stake systems. Sui, for example, utilizes 
 DAG for its consensus. 

 Parallelization can also be applied to the execution of transactions themselves. Nodes need 
 to carry out a sequence of transactions to ascertain state transitions. Parallelizing this 
 process could boost efficiency and execution speed. Our discussion here mainly focuses on 
 this aspect—parallelizing transaction execution. 

 Figure 1: Parallel computing comes in many forms. This report focuses on parallel 
 computing during the execution stage 

 Source: Binance Research 
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 Under the hood 

 Different ways to parallelize 
 execution 

 Sharding  reduces workload on a given client,  task  parallelism  utilizes multiple cores 
 for different tasks, and  data parallelism  improves  performance of certain types of 
 operations, such as cryptographic validation. 

 Let’s look at a non-exhaustive list of approaches different blockchains have used for 
 parallel execution. 

 ●  Sharding:  split execution work between validators 
 ●  Task parallelism:  process non-dependent transactions  in parallel using multiple 

 cores 
 ●  Data parallelism:  process similar instructions on  different data simultaneously 

 (SIMD) 

 (Execution) Sharding 

 The blockchain is split (“sharded”) into multiple parts, and transactions related to each 
 shard is processed by the assigned nodes separately. Sharding may be considered a 
 parallel processing technique from a network perspective. From an individual node’s 
 perspective, they may still be processing transactions in series. However, a given node 
 processes a fraction of all transactions submitted to the network, resulting in lower 
 workload and increased throughput. 

 TON is an example of a chain that implements this. Ethereum planned to do this at one 
 point, before opting for the roll-up centric design. Note that Ethereum’s current plan, 
 Danksharding, is a slightly different concept, as it shards transaction  data  , without splitting 
 execution workload. 

 We won’t deep dive into this here. 

 Task parallelism 

 An execution client executes multiple transactions simultaneously, using multiple 
 processing units. For example, if a node’s hardware has 16 cores, it may be able to 
 compute 16 transactions simultaneously, in batches. 
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 Solana falls under this category. Solana has no shards, so an  execution client needs to 
 execute all transactions in a block  . Execution is  quicker because nodes can  utilize its 
 hardware more efficiently  by taking advantage of multiple  cores. 

 Data parallelism (Single instruction multiple data, or SIMD) 

 Task parallelism computes multiple instructions on multiple data (“MIMD”). On the other 
 hand, data parallelism (the way we define it in this report) performs a single instruction on 
 multiple data (“SIMD”)  2  . SIMD operates at a low level, mostly for manipulating vectors and 
 matrices, which are arrays of numbers. This is useful for many types of operations, notably 
 cryptographic hashing and verification. 

 Figure 2: We deep dive into parallel computing a full block (task and data parallelism), 
 rather than sharding 

 Source: Binance Research 

 Task parallelism 
 How parallelizable is a program? 

 Tasks which are independent can be computed in parallel, and result in the same 
 outcome had they been computed in series. The program execution speed is limited 
 by the longest chain of dependent tasks. 

 Parallelism can increase throughput, but it comes with challenges. One of the first 
 challenges is to determine if two tasks can be computed in parallel. Let’s introduce a 
 concept called  independence  : Task A and Task B can  be executed in parallel if they are 
 independent. 

 2  Not to be confused with Solana IMprovement Docs (also  called SIMD) 
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 Cases when tasks are dependent 

 Case 1: 

 Case 2: 

 Most people would (correctly) guess that transactions (“txs”) in Case 1 are independent, 
 but not in Case 2. Imagine if there are two CPU cores, each core handling one transaction. 
 In Case 1, the second transaction can happen regardless of the outcome of the first, and 
 vice versa. One transaction can fail or we can change the sequence of transactions, and the 
 final outcome will still be the same. 

 This is not true in Case 2. If Bob has no BTC initially, the outcome of tx1 depends on what 
 happens in tx0. 

 It may be tempting to conclude that two transactions are parallelizable if the sequence 
 does not matter. In other words, if we can flip tx0 and tx1 and get the same outcome, are 
 the transactions independent? The answer is no.  Even  when their order doesn't matter, 
 two transactions can still be dependent  . Consider  this case: 

 Case 3: 

 In Case 3, the sequence of transactions doesn’t affect the outcome. tx1 can happen before 
 tx0. However, these two transactions are still dependent. Imagine these two processes 
 (“threads”) running concurrently: 
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 Figure 2: An example of a  race condition  , a type of software bug 

 BTC balance 
 Thread 0  Thread 1  Alice  Carol  Bob 

 Initial state  2  2  0 
 Read Alice’s balance (2BTC) 

 Read Carol’s balance (2BTC) 
 Read Bob’s balance (0BTC) 

 Read Bob’s balance (0BTC) 
 Update balances (Alice: 
 1BTC, Bob: 1BTC) 

 Update balances (Carol: 
 1.5BTC, Bob: 0.5BTC) 

 Write new balance to 
 memory 

 1  2  1 

 Write new balance to 
 memory 

 1  1.5  0.5 

 Source: Binance Research 

 Bob was supposed to have 1.5 BTC, but instead, he has only 0.5 BTC. If Thread 0 had 
 completed later, Bob would have had 1 BTC, which is still not right. As we can see, the 
 result is unpredictable because different components can interact in various ways, 
 depending on when they happen. This turns out to be a significant issue. 

 Conditions for (in-)dependence 

 Two tasks are  dependent  if they fulfill one of these  conditions: 

 ●  The output of one task writes to the input of the other  — e.g. Alice transfers ETH 
 to Bob (output), and Bob (input) transfers ETH to Carol. 

 ●  The output of multiple tasks write to the same memory location  - e.g. both Alice 
 and Carol transfer ETH to Bob (output). 

 For the math-inclined, a more formal statement is Bernstein’s conditions. For two tasks i 
 and j, where M(i) are memory locations i modifies, and R(i) are memory locations that i 
 reads, i and j are  independent  if: 

 𝑀 ( 𝑖 )    ⋂     𝑀 ( 𝑗 ) =  𝑀 ( 𝑖 )    ⋂     𝑅 ( 𝑗 ) =  𝑅 ( 𝑖 )    ⋂     𝑀 ( 𝑗 ) =  ∅ 

 These math symbols effectively say the same thing as our two bullet points above. 

 Back to our question: how parallelizable is a program? It is determined by how dependent 
 our tasks are.  The program is held back by the longest  chain of dependent tasks  , which 
 needs to be executed in series. 
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 Blockchain transactions often don't depend heavily on each other, so they can run in 
 parallel to a large extent. This provides a lot of opportunities to speed up the execution by 
 working on multiple transactions simultaneously. 

 Notably, many cryptographic schemes require fully sequential computation. It’s what 
 makes them secure. For example, the computation below hashes a value 1000 times, and 
 has to be run sequentially. 

 𝑐 
 𝑖 
   =  𝑆𝐻𝐴  256 ( 𝑐 

 𝑖 − 1 
),     𝑓𝑜𝑟     𝑖    =     0 ,  1 ,    ...    ,  1000 

 These types of computations are common in blockchain. For example, the  Fiat-Shamir  , 
 which we might use as part of zero-knowledge (“zk”) proof generation, requires iterative 
 hashing. Although such cryptographic computations need to be performed sequentially, if 
 several of such computations happen in separate independent transactions, we can still 
 parallelize them 

 Additionally, on-chain cryptographic verifications (e.g. signature verification) are very 
 common, and these often benefit from parallel computing. 

 Issues with task parallelism and methods to deal with them 

 Recall that task parallelism refers to multiple instructions on multiple data (MIMD) 
 processes, the ability to execute multiple different tasks simultaneously. While this can 
 increase throughput, it also opens a can of worms due to concurrency issues. 

 Loosely  speaking,  parallel  computing  refers  to  having  more  than  one 
 processor  core  running  at  the  same  time.  Concurrent  computing,  a  closely 
 related  term,  refers  to  a  system  where  multiple  parts  can  run  in  an 
 out-of-order  fashion,  without  affecting  the  outcome.  In  our  case, 
 concurrency  enables  parallel  computing.  If  it  doesn’t  immediately  make 
 sense,  don’t  worry.  Many  use  the  two  terms  interchangeably,  and  it  will 
 work for our purposes too. 

 Concurrent programs are prone to software bugs  . A  non-exhaustive list includes: 

 ×  race conditions, as we saw earlier 
 ×  reentrancy issues 
 ×  deadlocks, where two or more tasks wait for one another indefinitely, and a related 

 condition called livelocks 
 ×  non-composability, where a software component may be correct on its own, but 

 have critical bugs if used in a larger program 
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 ×  priority inversion, a condition where low priority task may indirectly block a higher 
 priority task due to intricacies on how a scheduler works 

 ×  resource starvation, where some tasks consume more than its fair share of 
 resources, starving other tasks of the resources they need 

 The first four are critical bugs  . Priority inversion  and resource starvation may be critical 
 depending on the situation. 

 Additionally, concurrent programs are  harder for developers  to manage  . This is because 
 their design is more complex, and it's more difficult to figure out and fix issues. 

 However, if we can address these challenges, the advantages of parallel computing can 
 exceed the difficulties. Let's explore some methods to manage this (known as "concurrency 
 control") and take a look at some example projects that use them: 

 ●  Message passing model  : 
 ○  Actor model  (used by Vara) 

 ●  Shared memory model  , which can be further categorized  into: 
 ○  Memory locks  such as mutual exclusion (mutex) (used  by Solana, Sui and 

 Sei) 
 ○  Optimistic concurrency control or  software transactional  memory 

 (OCC/STM) (used by Aptos and Monad) 

 Actor model (e.g. Vara) 

 Solves many critical problems with concurrency. However, the global state cannot be 
 directly observed, which makes it harder for the dApp developer to reason about and 
 debug. There may also be missed opportunities to parallelize 

 The actor model assigns different  actors  their  private  state  . An actor can directly modify its 
 private state, but only indirectly modify another actor’s state by passing a  message  . When 
 an actor receives a message, it decides how to handle it, potentially modifying its own state 
 in response to the message. 
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 Figure 3: Actors have private states that they have exclusive access to. Actors can also 
 send or receive messages from other actors. 

 Source: Binance Research 

 How does this enable parallelism? Each actor can process their own operations 
 sequentially, while the program (with many actors) assigns a processing thread to each 
 actor. Since actors can only access their own data, which is unique, there cannot be 
 situations where multiple actors are reading or writing to the same memory location. 
 Therefore, assigning a thread to each actor enables parallel computing, without risk of data 
 dependency issues. 

 CosmWasm  (which is a smart contract framework, not  a blockchain) also uses the actor 
 model. It uses it to avoid reentrancy vulnerabilities on smart contracts, one of the biggest 
 smart contract vulnerabilities on Ethereum Virtual Machines (EVMs). It can potentially be 
 used to enable parallel computing as well, but CosmWasm does not support this yet, as of 
 writing. 

 While the actor model solves many issues with concurrency, it is not perfect. A single actor 
 processes its tasks sequentially, which can miss opportunities to parallelize. Let’s see an 
 example, using a hypothetical decentralized vegetable store serving several customers: 
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 Figure 4: Three actors (the buyers) querying an actor’s (vege store’s) private state by 
 exchanging messages. In a basic actor model, the vege store above needs to process 
 each message one by one, although each operation is independent 

 Source: Binance Research 

 Despite the vegetable store actor processing messages sequentially,  our independence 
 conditions suggest they could be handled concurrently.  Multiple processes can read the 
 same datapoint in parallel. Is there a more effective model that allows the store to disclose 
 its private state like a public price list?  3 

 Also, there's no single location to observe the system's global state. A programmer might 
 examine each private state to understand the bigger picture, but it can sometimes be 
 complex. Interwoven private states can generate a  global state that's not instantly 
 visible  , making system behavior prediction challenging. 

 3  This can actually be done with some tweaks. For example, we can improve our basic actor model 
 by defining some values as immutable (such as the price) and some as mutable (such as the number 
 of items and balances). Immutable values can be safely read directly by any actor because there is 
 no possibility of a process modifying it. However, implementing this increases complexity. 
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 Figure 5: It’s a bad idea to have duplicate states if they are meant to be global, but this 
 can happen in a poorly implemented program using the actor model. Alice thinks Bob is 
 happy, but Bob is actually unhappy. The outcome of an interaction is unpredictable. If 
 we try to piece together the global state, we’ll realize it is either inconsistent or more 
 complicated than we initially thought. 

 Source: Binance Research 

 Memory locks (e.g. Solana, Sui and Sei) 

 Achieves high concurrency if implemented correctly. May be easier for dApp 
 developers to reason about. Has many pitfalls that lead to critical software bugs, but 
 many (not all) are mitigated by using a language with strong thread-safety (eg: Rust). 

 In the memory lock model, processes have access to all memory locations (i.e. data) by 
 default. If a process wishes to access some data, it ‘locks’ that memory location before 
 starting its process. Once the process is complete, it unlocks that memory location to 
 release it, so other processes can use it again. 
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 Figure 6: In a mutex lock, every process wishing to access memory will first lock it. 
 Another process wishing to access the data will wait until it is unlocked, before locking 
 it again and using the data. 

 Source: Binance Research 

 But we can do better. Recall the conditions for independence. Another way of stating it is: 

 Multiple tasks can access the same memory location only if none of them modifies its 
 contents 

 We can have a mechanism that checks every process wishing to access memory for 
 whether it intends to read or modify the data. The mechanism disallows a process from 
 accessing the data if the rules of independence are violated. It effectively has two types of 
 keys, read-only keys and a write (modify) key. 
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 Figure 7: We can have a locking mechanism which allows either a) multiple read 
 processes or b) one write process to access the data 

 Source: Binance Research 

 Let’s have a look at Solana’s code. In Solana, memory locations are called  accounts  . An 
 account can contain data, and transactions may need to lock one or more accounts in order 
 to access the data inside. Below is one part of the code that keeps track of the accounts 
 that have been locked. 

 Figure 8: Solana data structure that contains information on account locks. This data 
 structure itself uses Mutex (line 105) which ensures that only 1 thread at a time can 
 access the list of account locks. 

 Source: Solana repository commit  c3323c0  . Solana >  accounts-db > src > accounts.rs 

 Technical Deep Dive: Parallel Execution  16 

https://github.com/solana-labs/solana/commit/c3323c0c36384130103506818dc752ecec559f2d


 Figure 9: Usage of RwLock<> in Solana’s code, which is similar to Mutex but allows 
 multiple read operations to happen concurrently 

 Source: Solana repository commit  c3323c0  . Solana >  client > src > transaction_executor.rs 

 Back to our vege store illustration. With memory locks, the three buyer’s queries can be 
 performed in parallel, because they do not modify the data. 

 Figure 10: Multiple read operations are allowed, so these three buyers can read the 
 database concurrently. It is as if the store owner has a board displaying prices and 
 current inventory levels. Multiple people can read the board at the same time. 

 Source: Binance Research 

 While it sounds conceptually simple, memory locks are complicated to work with and 
 error-prone. In fact, some strongly discourage using this model. One of Go’s (or Golang, the 
 programming language) slogan is “  Don't communicate  by sharing memory; share memory 
 by communicating.” 

 Using memory locks is doing precisely what Go says you shouldn’t do (note that memory 
 locks are available in Go despite this slogan). The reason is  there are many pitfalls when 
 writing code with memory locks  . It’s easy to mis-coordinate  the locking process. A 
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 process could lock a data point, complete its process, and forget to unlock it. Or the 
 process is terminated before it can unlock a data point. Tasks that need to access that 
 memory location are now locked out indefinitely. 

 Deadlocks  are another pitfall, and can be  difficult  to identify  . A deadlock happens when 
 two processes need at least two locks, but have each acquired one. They will wait on each 
 other indefinitely, because neither can acquire the other lock it needs. 

 Figure 11: A deadlock. Process A and B wait for each other forever  . 

 Source: Binance Research 

 Data can also be corrupted, called  mutex poisoning  in the Rust community, when a thread 
 holding a lock aborts (‘panics’) due to an error. Unlike our example earlier of a lock never 
 being returned, Rust has safety mechanisms to ensure a lock is returned even if a process 
 terminates. However, the contents of the data may be corrupted, as the thread may have 
 partially modified the data before crashing. 

 Programs designed with memory locks are also normally  not composable  —a software 
 module could work properly on its own, but fail when used as part of a larger program. A 
 programmer may have written code in a way that ensures no deadlocks happen within the 
 module, but when interacting with other modules that access the same data, a deadlock 
 may be created. Also, different modules may use different mutex logic—one using a guard 
 and one using a more manual approach—which can lead to mis-coordination in handling 
 the memory locks. These situations are likely to result in critical bugs. 

 With all these issues, why is anyone using memory locks at all? One important factor could 
 be because of  Rust  (the programming language), which  allows programmers to write 
 code with memory locks in a safer way than was possible with previous languages  such 
 as Java and C#. Incidentally, both Solana and Sui are written in Rust  4  . Sei is a Cosmos 

 4  Deadlocks are still a potential issue when programming with Rust. 
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 chain, written in Go, but its parallelization module is written in Rust. With the safety 
 afforded by Rust, these projects can benefit from the advantages of using memory locks. 

 Figure 12:  Rust’s mascot (left) and Go’s mascot (right) arguing. If you don’t get the 
 joke: Rust says Go is only good at the actor model. Go responds by poking fun at 
 Rust’s notoriously strict compiler. Rust’s compiler enables memory locks to be used 
 relatively safely, but it also causes many new Rust programmers to spend more time 
 “fighting” with compiler errors than actually writing code. Rust hits back by saying 
 that because of the compiler, Rust doesn’t have data races (a type of race condition, a 
 critical bug we demonstrated earlier), unlike Go. 

 Source: Binance Research 

 Memory locks normally offer  finer-grained control  than the actor model, making it easier 
 for developers to optimize an application. A program using the memory lock model may 
 also be easier to reason about than one using the actor model, especially in simple cases. 
 In complex programs, this point is debatable. 

 When designing a program with memory locks, there is a  tradeoff in the level of 
 granularity  . Highly granular locks enable greater  parallelism, because it avoids locking 
 parts of data that don’t need to be locked. But high granularity also results in more 
 overhead due to the greater complexity of managing locks, and a higher risk of creating 
 deadlocks, as it is more complex for programmers to reason about. 

 Solana programs (aka smart contracts) are encouraged to split their state across several 
 accounts, which increases granularity. For example, a decentralized exchange (“DEX”) can 
 store information on all its liquidity pools (“LPs”) in a single account. However, this may be 
 non-optimal, as transactions wishing to access this information will lock the entire blob of 
 data, preventing others from accessing it. On the other end of the spectrum, the program 
 could have a separate account for each LP pool, which increases parallelism but at the cost 
 of greater overhead and risks. 
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 Figure 13: Higher granularity improves parallelism because of lower contention 
 (conflicts)…but increases computation overhead and risk of creating deadlocks 

 Source: Binance Research 

 Similar to the actor model, handling memory locks requires  extra work  from the software 
 programmer. For example on Solana, transactions need to  explicitly declare the accounts 
 (i.e. memory locations) they will access  . The Solana  VM then uses this information to lock 
 data associated with those accounts. 

 Figure 14: Transactions on Solana need to declare the memory locations (“accounts”) 
 that it will read or modify. This code defines the format of this information. The runtime 
 uses this information to decide which transactions to run in parallel. 

 Source: Solana repository commit  c3323c0  . Solana >  sdk > program > source > account_info.rs 
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 Software transactional memory (e.g. Aptos and Monad) 

 STM normally achieves high parallelism without the risks of deadlocks. dApp 
 developers do not need to deal with increased complexity, but base layer 
 implementation can be difficult. Throughput can be low if there are many 
 dependencies, as transactions may retry many times before succeeding. 

 Software transactional memory (“STM”) takes an  optimistic  approach  to shared memory. 
 It runs many threads in parallel, disregarding whether they are independent or not. Once 
 done, it checks for potential conflicts. The highest priority task in any conflict is committed, 
 while the others are aborted and rerun (“retry”) in the next cycle. This happens until all 
 processes are executed. 

 Figure 15: Simplified illustration of Aptos’ STM design: Tx0, Tx1 and Tx2 are taken from 
 the queue and run optimistically in parallel. In Cycle 0, Tx0 modifies Data 0, Tx1 
 modifies Data 2 and 3, and Tx2 modifies Data 2. After the cycle, Tx1 and Tx2 notice that 
 they had both modified Data 2 (a conflict). Because Tx1 is earlier in the sequence of 
 transactions, Tx1 commits and Tx2 aborts. Tx2 retries in the next cycle. 

 Source: Binance Research 

 There are many different designs of STM. Aptos’ STM design uses a multi-versioned data 
 structure to detect and handle conflicts. When transactions modify any value, the system 
 logs the change and attaches a new version number, while keeping track of the historical 
 values. All STM implementations require some form of log like this.  The log takes place in 
 memory before being committed, which can lead to high memory requirements  . 

 Let’s return to our vege store illustration. If we were to use STM, it would look something 
 like this: 

 Figure 16: using STM on the vege store. After Cycle 0, all three threads note that there 
 had been no conflict, so all three transactions are committed. In Cycle 1, Tx4 and Tx5 
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 see that the information they read or modified (number of carrots) had been changed 
 by Tx3 in the same cycle. Since Tx3 is ordered before Tx4 and Tx5 in the sequence of 
 transactions, Tx3 is committed, and Tx4 and Tx5 abort. Tx4 and Tx5 retry in Cycle 2. 

 Source: Binance Research 

 At first glance, STM’s concept of aborting and retrying many times may seem wasteful. 
 Also, the  chance of conflict increases with the number  of threads  . If we run 100 threads, 
 we are more likely to have conflicts than if we run 5 threads. In a program with many 
 dependencies, a task can abort many times before finally committing. It also has 
 computation overhead of managing the process. This can ultimately result in lower 
 performance than simple serial execution. 

 Nevertheless,  STM results in higher throughput in  many cases  . It generally achieves 
 comparable parallelism to a memory lock model with high granularity, but without the risk 
 of deadlocks. Also, there are clever ways to design the system so that an aborted task does 
 not need to be recomputed from scratch, or to detect potential conflicts earlier in a cycle 
 for tasks that are being retried. 

 It is also easier on the dApp developer. The  dApp  developer can write a smart contract as 
 if it is a serial program  , yet benefit from parallel  computation. However, the base layer 
 (e.g. Aptos’ VM) needs to handle the complexity of concurrency and parallelizing the 
 execution,  making STM complex for the base layer developers  (e.g. the Aptos core team 
 writing the code for the blockchain). STM is also an area of active research, so some 
 aspects of the model may not be fully understood yet. 
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 Data parallelism (SIMD) 
 SIMD improves computation speed for certain types of operations, such as 
 cryptographic verifications. 

 Data parallelism, in this report, refers to operations with a single instruction on multiple 
 data (SIMD).  Instructions  are quite basic computing  units, such as addition and 
 multiplication. It turns out that this is useful when dealing with vectors or matrices. SIMD 
 allows us to perform vector or matrix operations very quickly. 

 Figure 17: In this example, we encrypt our secret data {1.5, 3.2} by multiplying it with 
 the encryption key matrix. To decrypt, we multiply the inverse of this matrix with the 
 encrypted data. If you remember matrix multiplications, you will see that we retrieve 
 the original secret data. Real-world ciphers such as Advanced Encryption Standard 
 (AES) perform similar matrix multiplications as part of a larger, much more 
 sophisticated algorithm. 

 Source: Binance Research 

 This is not a math lesson, so we won’t dive into this. The thing to note is that  vectors and 
 matrices are very useful in many areas of computer science, such as processing large 
 amounts of data and performing cryptographic operations  .  The basic example above 
 shows how matrices can be used for encryption and decryption using an encryption key. 

 SIMD can be done using CPUs or GPUs. Many CPUs today have 64-bit processors. This 
 means that in each clock cycle, a processor can operate on 64-bit data. Some processors, 
 such as AVX-2 and AVX-512, expand this register to 256 or 512 bits. With a 256 bit register, 
 the processor can simultaneously operate on four 64-bit numbers, for example. 
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 GPUs can also perform SIMD operations, where a single task scheduler can assign similar 
 instructions to many processing units. With several thousand cores, GPUs are performant in 
 cases where a single instruction is used across a very large dataset. 

 Vector and matrix operations involve a lot of repeated additions and multiplications on 
 arrays of numbers. SIMD can speed up these operations significantly. 

 Let’s look at Solana’s code, showing the use of the AVX processor. 

 Figure 18: Code snippet performing cryptographic verification during Solana’s Proof of 
 History (PoH). Depending on the hardware being used, Solana will use different 
 algorithms for verification. For example, if it detects an AVX-512 processor, it will 
 verify using SIMD with 16 data points per cycle (lines 766 and 767). 

 Source: Solana repository commit  c3323c0  . Solana >  entry > src > entry.rs 

 Wrapping up 
 Let’s recap what we have covered. Parallel processing can increase throughput (or reduce 
 cost) by utilizing resources more efficiently. The execution stage is one of several areas we 
 can parallelize, but it presents issues that software developers must overcome. Incorrectly 
 handling these issues results in critical software bugs. We discussed a few solutions, which 
 is summarized below, including their pros and cons: 
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 Figure 19: Pros and cons of approaches discussed in this report 

 Pros  Cons  Example projects 
 discussed in this 
 report 

 Sharding  Node operators do not 
 need to have hardware 
 that support parallel 
 processing 

 Often trades off 
 security or latency for 
 throughput, rather 
 than using hardware 
 more efficiently 

 Used by TON, and was 
 the original Ethereum 
 2.0 vision 

 Message- 
 passing 
 model 

 Actor model  Solves most 
 concurrency issues 

 Harder to reason 
 about, and may miss 
 parallelism 
 opportunities 

 Vara 

 Shared 
 memory 
 model 

 Memory locks / 
 Mutex 

 Finer-grained control, 
 allowing for more 
 optimization. 
 Potentially lower 
 complexity burden on 
 dApp developers 

 Vulnerable to some 
 critical issues, notably 
 deadlocks and 
 non-composability, 
 even when using a 
 thread-safe program 
 like Rust 

 Solana, Sui, Sei 

 Software 
 Transactional 
 Memory (STM) 

 Solves critical 
 concurrency issues. 
 Often achieves high 
 parallelism. No 
 additional complexity 
 for dApp developers. 

 Complexity burden on 
 base layer developers. 
 Active area of 
 research, so 
 potentially less well- 
 understood. 

 Aptos, Monad 

 Data 
 parallelism 

 SIMD  Significant speed-up 
 on certain operations, 
 mostly those that use 
 matrices, which 
 includes many 
 cryptographic 
 functions 

 Only works for certain 
 operations, i.e. those 
 that have the same 
 instructions on many 
 data points 

 Solana 

 Source: Binance Research 

 Will Ethereum incorporate parallel processing  ? It  is  unlikely  in the near future, 
 considering it is pursuing a rollup-centric model. Nevertheless, there is promising potential 
 for EVMs equipped with parallel processing capabilities (e.g. Monad) and rollups that use 
 parallel processing at the sequencer level and settle on Ethereum (e.g. Eclipse). There is 
 also an emerging trend allowing Solidity to be used for smart contracts on blockchains 
 equipped with parallel processing. For instance in Solana, while Rust is the main language, 
 Solidity can also be used by utilizing the Solang compiler. 

 In the wider crypto-ecosystem, parallel processing is being adopted by many new projects. 
 We've discussed a few here, highlighting Solana due to recent interest. Parallel processing 
 is key to improving throughput and is a selling point for many projects. 
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 Read more  here  Share your feedback  here 

 General Disclosure:  This material is prepared by Binance Research and is not intended to be relied upon as a 
 forecast or investment advice, and is not a recommendation, offer or solicitation to buy or sell any securities, 
 cryptocurrencies or to adopt any investment strategy. The use of terminology and the views expressed are 
 intended to promote understanding and the responsible development of the sector and should not be 
 interpreted as definitive legal views or those of Binance. The opinions expressed are as of the date shown above 
 and are the opinions of the writer, they may change as subsequent conditions vary. The information and 
 opinions contained in this material are derived from proprietary and non-proprietary sources deemed by 
 Binance Research to be reliable, are not necessarily all-inclusive and are not guaranteed as to accuracy. As 
 such, no warranty of accuracy or reliability is given and no responsibility arising in any other way for errors and 
 omissions (including responsibility to any person by reason of negligence) is accepted by Binance. This material 
 may contain ’forward looking’ information that is not purely historical in nature. Such information may include, 
 among other things, projections and forecasts. There is no guarantee that any forecasts made will come to 
 pass. Reliance upon information in this material is at the sole discretion of the reader. This material is intended 
 for information purposes only and does not constitute investment advice or an offer or solicitation to purchase 
 or sell in any securities, cryptocurrencies or any investment strategy nor shall any securities or cryptocurrency 
 be offered or sold to any person in any jurisdiction in which an offer, solicitation, purchase or sale would be 
 unlawful under the laws of such jurisdiction. Investment involves risks. 
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